Acuerdos de Nivel de Servicio (SLA) (también “Service Level Agreement” o “Acuerdos de Calidad de Servicio”) son contratos formales que establecen expectativas de rendimiento, disponibilidad y seguridad para servicios proporcionados por terceros, incluyendo métricas específicas y consecuencias por incumplimiento. Los SLA son fundamentales en la gestión de riesgos de terceros (TPRM) y establecen objetivos medibles para aspectos como tiempo de actividad, tiempo de respuesta y disponibilidad de servicios, siendo esenciales para garantizar que los proveedores cumplan con los estándares requeridos.

¿Qué son los SLA de Seguridad?

Los SLA de seguridad son acuerdos contractuales que definen los niveles de servicio de seguridad que un proveedor debe cumplir, incluyendo métricas de rendimiento, tiempos de respuesta, disponibilidad y medidas de seguridad específicas.

Componentes de un SLA

Definiciones de Servicio

  • Servicios Incluidos: Servicios de seguridad específicos
  • Alcance: Alcance geográfico y temporal
  • Exclusiones: Servicios no incluidos
  • Dependencias: Dependencias del servicio

Métricas de Rendimiento

  • Disponibilidad: Porcentaje de tiempo de disponibilidad
  • Tiempo de Respuesta: Tiempo para responder a incidentes
  • Tiempo de Resolución: Tiempo para resolver problemas
  • Throughput: Capacidad de procesamiento

Medidas de Seguridad

  • Controles de Seguridad: Controles específicos requeridos
  • Certificaciones: Certificaciones de seguridad necesarias
  • Auditorías: Frecuencia y tipo de auditorías
  • Cumplimiento: Requisitos de cumplimiento normativo

Sistema de Gestión de SLA

Gestión de Contratos

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import json

class SLAManagement:
    def __init__(self):
        self.sla_contracts = {}
        self.service_levels = {}
        self.performance_metrics = {}
        self.violations = {}
        self.reports = {}
    
    def create_sla_contract(self, contract_id, contract_data):
        """Crear contrato SLA"""
        self.sla_contracts[contract_id] = {
            'contract_id': contract_id,
            'provider_name': contract_data['provider_name'],
            'service_name': contract_data['service_name'],
            'start_date': contract_data['start_date'],
            'end_date': contract_data['end_date'],
            'renewal_date': contract_data.get('renewal_date'),
            'status': 'active',
            'service_levels': contract_data.get('service_levels', {}),
            'security_requirements': contract_data.get('security_requirements', {}),
            'penalties': contract_data.get('penalties', {}),
            'rewards': contract_data.get('rewards', {}),
            'created_date': datetime.now()
        }
    
    def define_service_level(self, contract_id, sl_id, sl_data):
        """Definir nivel de servicio"""
        if contract_id not in self.sla_contracts:
            return False
        
        service_level = {
            'sl_id': sl_id,
            'contract_id': contract_id,
            'metric_name': sl_data['metric_name'],
            'description': sl_data['description'],
            'target_value': sl_data['target_value'],
            'measurement_method': sl_data['measurement_method'],
            'frequency': sl_data['frequency'],
            'unit': sl_data.get('unit', 'percentage'),
            'threshold_warning': sl_data.get('threshold_warning', 0.9),
            'threshold_critical': sl_data.get('threshold_critical', 0.8),
            'penalty_rate': sl_data.get('penalty_rate', 0.01),
            'reward_rate': sl_data.get('reward_rate', 0.005)
        }
        
        self.service_levels[sl_id] = service_level
        return True
    
    def record_performance_measurement(self, sl_id, measurement_data):
        """Registrar medición de rendimiento"""
        if sl_id not in self.service_levels:
            return False
        
        measurement_id = f"MEAS-{len(self.performance_metrics) + 1}"
        
        measurement = {
            'measurement_id': measurement_id,
            'sl_id': sl_id,
            'contract_id': self.service_levels[sl_id]['contract_id'],
            'measured_value': measurement_data['value'],
            'target_value': self.service_levels[sl_id]['target_value'],
            'measurement_date': measurement_data.get('date', datetime.now()),
            'context': measurement_data.get('context', {}),
            'quality_score': measurement_data.get('quality_score', 1.0)
        }
        
        # Calcular cumplimiento
        target = measurement['target_value']
        actual = measurement['measured_value']
        
        if measurement['unit'] == 'percentage':
            compliance = actual / target if target > 0 else 0
        else:
            # Para métricas donde menor es mejor (como tiempo de respuesta)
            compliance = target / actual if actual > 0 else 0
        
        measurement['compliance'] = compliance
        measurement['status'] = self.determine_sla_status(compliance, sl_id)
        
        self.performance_metrics[measurement_id] = measurement
        return True
    
    def determine_sla_status(self, compliance, sl_id):
        """Determinar estado del SLA"""
        service_level = self.service_levels[sl_id]
        
        if compliance >= 1.0:
            return 'excellent'
        elif compliance >= service_level['threshold_warning']:
            return 'good'
        elif compliance >= service_level['threshold_critical']:
            return 'warning'
        else:
            return 'violation'
    
    def calculate_sla_violations(self, contract_id, period_days=30):
        """Calcular violaciones de SLA"""
        if contract_id not in self.sla_contracts:
            return []
        
        # Obtener mediciones del período
        cutoff_date = datetime.now() - timedelta(days=period_days)
        contract_measurements = [
            m for m in self.performance_metrics.values()
            if m['contract_id'] == contract_id and m['measurement_date'] >= cutoff_date
        ]
        
        violations = []
        
        for measurement in contract_measurements:
            if measurement['status'] == 'violation':
                sl_id = measurement['sl_id']
                service_level = self.service_levels[sl_id]
                
                violation = {
                    'violation_id': f"VIOL-{len(violations) + 1}",
                    'contract_id': contract_id,
                    'sl_id': sl_id,
                    'metric_name': service_level['metric_name'],
                    'target_value': measurement['target_value'],
                    'actual_value': measurement['measured_value'],
                    'compliance': measurement['compliance'],
                    'violation_date': measurement['measurement_date'],
                    'penalty_amount': self.calculate_penalty(measurement, service_level)
                }
                
                violations.append(violation)
        
        return violations
    
    def calculate_penalty(self, measurement, service_level):
        """Calcular penalización por violación"""
        if measurement['status'] != 'violation':
            return 0
        
        # Calcular penalización basada en la desviación
        deviation = 1 - measurement['compliance']
        penalty_rate = service_level['penalty_rate']
        
        # Penalización base del contrato
        base_penalty = self.sla_contracts[measurement['contract_id']].get('base_penalty', 1000)
        
        penalty = base_penalty * penalty_rate * deviation
        return penalty
    
    def calculate_rewards(self, contract_id, period_days=30):
        """Calcular recompensas por cumplimiento excepcional"""
        if contract_id not in self.sla_contracts:
            return []
        
        # Obtener mediciones del período
        cutoff_date = datetime.now() - timedelta(days=period_days)
        contract_measurements = [
            m for m in self.performance_metrics.values()
            if m['contract_id'] == contract_id and m['measurement_date'] >= cutoff_date
        ]
        
        rewards = []
        
        for measurement in contract_measurements:
            if measurement['status'] == 'excellent':
                sl_id = measurement['sl_id']
                service_level = self.service_levels[sl_id]
                
                reward = {
                    'reward_id': f"REW-{len(rewards) + 1}",
                    'contract_id': contract_id,
                    'sl_id': sl_id,
                    'metric_name': service_level['metric_name'],
                    'target_value': measurement['target_value'],
                    'actual_value': measurement['measured_value'],
                    'compliance': measurement['compliance'],
                    'reward_date': measurement['measurement_date'],
                    'reward_amount': self.calculate_reward(measurement, service_level)
                }
                
                rewards.append(reward)
        
        return rewards
    
    def calculate_reward(self, measurement, service_level):
        """Calcular recompensa por cumplimiento excepcional"""
        if measurement['status'] != 'excellent':
            return 0
        
        # Calcular recompensa basada en el exceso de cumplimiento
        excess = measurement['compliance'] - 1.0
        reward_rate = service_level['reward_rate']
        
        # Recompensa base del contrato
        base_reward = self.sla_contracts[measurement['contract_id']].get('base_reward', 500)
        
        reward = base_reward * reward_rate * excess
        return reward
    
    def generate_sla_report(self, contract_id, period_days=30):
        """Generar reporte de SLA"""
        if contract_id not in self.sla_contracts:
            return None
        
        contract = self.sla_contracts[contract_id]
        
        # Obtener métricas del período
        cutoff_date = datetime.now() - timedelta(days=period_days)
        contract_measurements = [
            m for m in self.performance_metrics.values()
            if m['contract_id'] == contract_id and m['measurement_date'] >= cutoff_date
        ]
        
        # Calcular estadísticas
        total_measurements = len(contract_measurements)
        excellent_count = len([m for m in contract_measurements if m['status'] == 'excellent'])
        good_count = len([m for m in contract_measurements if m['status'] == 'good'])
        warning_count = len([m for m in contract_measurements if m['status'] == 'warning'])
        violation_count = len([m for m in contract_measurements if m['status'] == 'violation'])
        
        # Calcular violaciones y recompensas
        violations = self.calculate_sla_violations(contract_id, period_days)
        rewards = self.calculate_rewards(contract_id, period_days)
        
        total_penalties = sum(v['penalty_amount'] for v in violations)
        total_rewards = sum(r['reward_amount'] for r in rewards)
        
        # Calcular score general
        if total_measurements > 0:
            overall_score = (excellent_count * 4 + good_count * 3 + warning_count * 2 + violation_count * 1) / total_measurements
        else:
            overall_score = 0
        
        report = {
            'contract_id': contract_id,
            'provider_name': contract['provider_name'],
            'service_name': contract['service_name'],
            'report_period': f"{period_days} days",
            'report_date': datetime.now(),
            'overall_score': overall_score,
            'total_measurements': total_measurements,
            'performance_breakdown': {
                'excellent': excellent_count,
                'good': good_count,
                'warning': warning_count,
                'violation': violation_count
            },
            'violations': violations,
            'rewards': rewards,
            'total_penalties': total_penalties,
            'total_rewards': total_rewards,
            'net_impact': total_rewards - total_penalties,
            'recommendations': self.generate_sla_recommendations(contract_id, violations, rewards)
        }
        
        return report
    
    def generate_sla_recommendations(self, contract_id, violations, rewards):
        """Generar recomendaciones basadas en SLA"""
        recommendations = []
        
        if len(violations) > 5:
            recommendations.append({
                'type': 'performance_improvement',
                'priority': 'high',
                'description': f"Mejorar rendimiento - {len(violations)} violaciones en el período"
            })
        
        if len(rewards) > 10:
            recommendations.append({
                'type': 'contract_optimization',
                'priority': 'medium',
                'description': f"Considerar ajustar objetivos - {len(rewards)} recompensas excesivas"
            })
        
        # Analizar patrones de violaciones
        violation_metrics = {}
        for violation in violations:
            metric = violation['metric_name']
            if metric not in violation_metrics:
                violation_metrics[metric] = 0
            violation_metrics[metric] += 1
        
        for metric, count in violation_metrics.items():
            if count > 3:
                recommendations.append({
                    'type': 'metric_focus',
                    'priority': 'medium',
                    'description': f"Enfocar en {metric} - {count} violaciones"
                })
        
        return recommendations

# Ejemplo de uso
sla_mgmt = SLAManagement()

# Crear contrato SLA
sla_mgmt.create_sla_contract('SLA-001', {
    'provider_name': 'Cloud Security Provider',
    'service_name': 'Managed Security Services',
    'start_date': datetime.now(),
    'end_date': datetime.now() + timedelta(days=365),
    'base_penalty': 1000,
    'base_reward': 500
})

# Definir niveles de servicio
sla_mgmt.define_service_level('SLA-001', 'SL-001', {
    'metric_name': 'Availability',
    'description': 'Disponibilidad del servicio',
    'target_value': 99.9,
    'measurement_method': 'uptime_monitoring',
    'frequency': 'daily',
    'unit': 'percentage',
    'threshold_warning': 0.99,
    'threshold_critical': 0.95,
    'penalty_rate': 0.01,
    'reward_rate': 0.005
})

sla_mgmt.define_service_level('SLA-001', 'SL-002', {
    'metric_name': 'Response Time',
    'description': 'Tiempo de respuesta a incidentes',
    'target_value': 1.0,
    'measurement_method': 'incident_tracking',
    'frequency': 'per_incident',
    'unit': 'hours',
    'threshold_warning': 1.5,
    'threshold_critical': 2.0,
    'penalty_rate': 0.02,
    'reward_rate': 0.01
})

# Registrar mediciones
sla_mgmt.record_performance_measurement('SL-001', {'value': 99.5, 'date': datetime.now()})
sla_mgmt.record_performance_measurement('SL-002', {'value': 0.8, 'date': datetime.now()})

# Generar reporte
report = sla_mgmt.generate_sla_report('SLA-001')
print(f"Reporte SLA: Score general {report['overall_score']:.2f}")
print(f"Violaciones: {len(report['violations'])}")
print(f"Recompensas: {len(report['rewards'])}")

Monitoreo de Cumplimiento

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
class SLAComplianceMonitoring:
    def __init__(self):
        self.monitoring_rules = {}
        self.alerts = {}
        self.trends = {}
        self.predictions = {}
    
    def setup_monitoring(self, contract_id, monitoring_config):
        """Configurar monitoreo de SLA"""
        self.monitoring_rules[contract_id] = {
            'contract_id': contract_id,
            'monitoring_enabled': True,
            'alert_thresholds': monitoring_config['alert_thresholds'],
            'notification_channels': monitoring_config['notification_channels'],
            'escalation_rules': monitoring_config['escalation_rules'],
            'last_check': None
        }
    
    def check_sla_compliance(self, contract_id, measurements):
        """Verificar cumplimiento de SLA"""
        if contract_id not in self.monitoring_rules:
            return None
        
        rule = self.monitoring_rules[contract_id]
        
        compliance_check = {
            'contract_id': contract_id,
            'check_date': datetime.now(),
            'total_measurements': len(measurements),
            'violations': 0,
            'warnings': 0,
            'excellent_performance': 0,
            'overall_compliance': 0,
            'alerts': []
        }
        
        # Analizar cada medición
        for measurement in measurements:
            if measurement['status'] == 'violation':
                compliance_check['violations'] += 1
            elif measurement['status'] == 'warning':
                compliance_check['warnings'] += 1
            elif measurement['status'] == 'excellent':
                compliance_check['excellent_performance'] += 1
        
        # Calcular cumplimiento general
        if compliance_check['total_measurements'] > 0:
            compliance_check['overall_compliance'] = (
                compliance_check['excellent_performance'] + 
                (compliance_check['total_measurements'] - compliance_check['violations'] - compliance_check['warnings'])
            ) / compliance_check['total_measurements']
        
        # Generar alertas
        self.generate_compliance_alerts(contract_id, compliance_check, rule)
        
        # Actualizar regla
        rule['last_check'] = datetime.now()
        
        return compliance_check
    
    def generate_compliance_alerts(self, contract_id, compliance_check, rule):
        """Generar alertas de cumplimiento"""
        thresholds = rule['alert_thresholds']
        
        # Alerta por violaciones excesivas
        if compliance_check['violations'] > thresholds.get('max_violations', 5):
            alert = {
                'alert_id': f"ALERT-{len(self.alerts) + 1}",
                'contract_id': contract_id,
                'type': 'excessive_violations',
                'severity': 'high',
                'message': f"Excesivas violaciones de SLA: {compliance_check['violations']}",
                'timestamp': datetime.now(),
                'status': 'active'
            }
            self.alerts[alert['alert_id']] = alert
            compliance_check['alerts'].append(alert)
        
        # Alerta por cumplimiento bajo
        if compliance_check['overall_compliance'] < thresholds.get('min_compliance', 0.8):
            alert = {
                'alert_id': f"ALERT-{len(self.alerts) + 1}",
                'contract_id': contract_id,
                'type': 'low_compliance',
                'severity': 'medium',
                'message': f"Cumplimiento bajo: {compliance_check['overall_compliance']:.2%}",
                'timestamp': datetime.now(),
                'status': 'active'
            }
            self.alerts[alert['alert_id']] = alert
            compliance_check['alerts'].append(alert)
        
        # Alerta por tendencia negativa
        if self.detect_negative_trend(contract_id):
            alert = {
                'alert_id': f"ALERT-{len(self.alerts) + 1}",
                'contract_id': contract_id,
                'type': 'negative_trend',
                'severity': 'medium',
                'message': "Tendencia negativa detectada en cumplimiento de SLA",
                'timestamp': datetime.now(),
                'status': 'active'
            }
            self.alerts[alert['alert_id']] = alert
            compliance_check['alerts'].append(alert)
    
    def detect_negative_trend(self, contract_id):
        """Detectar tendencia negativa"""
        # Obtener mediciones recientes
        recent_measurements = self.get_recent_measurements(contract_id, days=30)
        
        if len(recent_measurements) < 10:
            return False
        
        # Calcular tendencia usando regresión lineal
        x = np.arange(len(recent_measurements))
        y = np.array([m['compliance'] for m in recent_measurements])
        
        if len(x) > 1:
            slope = np.polyfit(x, y, 1)[0]
            return slope < -0.01  # Tendencia negativa significativa
        
        return False
    
    def get_recent_measurements(self, contract_id, days=30):
        """Obtener mediciones recientes"""
        # Simulación de mediciones recientes
        measurements = []
        for i in range(days):
            compliance = 0.8 + np.random.normal(0, 0.1) - i * 0.001  # Tendencia ligeramente negativa
            measurements.append({
                'compliance': max(0, min(1, compliance)),
                'date': datetime.now() - timedelta(days=days-i)
            })
        
        return measurements
    
    def predict_sla_performance(self, contract_id, days_ahead=30):
        """Predecir rendimiento de SLA"""
        recent_measurements = self.get_recent_measurements(contract_id, days=30)
        
        if len(recent_measurements) < 10:
            return None
        
        # Usar media móvil para predicción
        compliance_values = [m['compliance'] for m in recent_measurements]
        window_size = min(7, len(compliance_values) // 2)
        
        predictions = []
        for i in range(days_ahead):
            recent_window = compliance_values[-window_size:]
            predicted_compliance = np.mean(recent_window)
            
            predictions.append({
                'day': i + 1,
                'predicted_compliance': predicted_compliance,
                'confidence': self.calculate_prediction_confidence(compliance_values)
            })
        
        return predictions
    
    def calculate_prediction_confidence(self, values):
        """Calcular confianza de predicción"""
        if len(values) < 2:
            return 0.5
        
        # Basado en la variabilidad de los datos
        std = np.std(values)
        mean = np.mean(values)
        
        if mean > 0:
            coefficient_of_variation = std / mean
            confidence = max(0.1, 1 - coefficient_of_variation)
        else:
            confidence = 0.5
        
        return confidence
    
    def generate_compliance_dashboard(self, contract_id):
        """Generar dashboard de cumplimiento"""
        compliance_check = self.check_sla_compliance(contract_id, [])
        predictions = self.predict_sla_performance(contract_id)
        
        dashboard = {
            'contract_id': contract_id,
            'last_updated': datetime.now(),
            'current_compliance': compliance_check['overall_compliance'],
            'violations': compliance_check['violations'],
            'warnings': compliance_check['warnings'],
            'excellent_performance': compliance_check['excellent_performance'],
            'active_alerts': len([a for a in self.alerts.values() if a['status'] == 'active']),
            'predictions': predictions,
            'recommendations': self.generate_monitoring_recommendations(contract_id)
        }
        
        return dashboard
    
    def generate_monitoring_recommendations(self, contract_id):
        """Generar recomendaciones de monitoreo"""
        recommendations = []
        
        # Obtener alertas activas
        active_alerts = [a for a in self.alerts.values() if a['status'] == 'active']
        
        if len(active_alerts) > 3:
            recommendations.append({
                'type': 'alert_management',
                'priority': 'high',
                'description': f"Gestionar {len(active_alerts)} alertas activas"
            })
        
        # Verificar tendencias
        if self.detect_negative_trend(contract_id):
            recommendations.append({
                'type': 'trend_analysis',
                'priority': 'medium',
                'description': "Analizar tendencia negativa y tomar medidas correctivas"
            })
        
        return recommendations

# Ejemplo de uso
compliance_monitoring = SLAComplianceMonitoring()

# Configurar monitoreo
compliance_monitoring.setup_monitoring('SLA-001', {
    'alert_thresholds': {
        'max_violations': 3,
        'min_compliance': 0.85
    },
    'notification_channels': ['email', 'slack'],
    'escalation_rules': {
        'escalation_level_1': 'Security Team',
        'escalation_level_2': 'CISO',
        'escalation_level_3': 'CEO'
    }
})

# Verificar cumplimiento
compliance_check = compliance_monitoring.check_sla_compliance('SLA-001', [])
print(f"Verificación de cumplimiento: {compliance_check['overall_compliance']:.2%}")

# Generar dashboard
dashboard = compliance_monitoring.generate_compliance_dashboard('SLA-001')
print(f"Dashboard de cumplimiento: {dashboard['active_alerts']} alertas activas")

Mejores Prácticas

Diseño de SLA

  • Especificidad: Métricas específicas y medibles
  • Realismo: Objetivos realistas y alcanzables
  • Claridad: Definiciones claras y sin ambigüedades
  • Flexibilidad: Capacidad de adaptación a cambios

Monitoreo

  • Automatización: Automatización del monitoreo
  • Tiempo Real: Monitoreo en tiempo real cuando sea posible
  • Alertas: Sistema de alertas efectivo
  • Reportes: Reportes regulares y detallados

Gestión

  • Comunicación: Comunicación regular con proveedores
  • Revisión: Revisión regular de SLA
  • Mejora: Proceso de mejora continua
  • Renegociación: Renegociación cuando sea necesario

Conceptos Relacionados

Referencias