1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
| import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
class SecurityMetricsManagement:
def __init__(self):
self.metrics = {}
self.kpis = {}
self.measurements = {}
self.baselines = {}
self.targets = {}
self.trends = {}
def define_metric(self, metric_id, metric_config):
"""Definir métrica de seguridad"""
self.metrics[metric_id] = {
'metric_id': metric_id,
'name': metric_config['name'],
'description': metric_config['description'],
'category': metric_config['category'],
'type': metric_config['type'], # 'operational', 'strategic', 'tactical'
'unit': metric_config.get('unit', 'count'),
'frequency': metric_config.get('frequency', 'daily'),
'data_source': metric_config.get('data_source', 'manual'),
'calculation_method': metric_config.get('calculation_method', 'sum'),
'is_kpi': metric_config.get('is_kpi', False),
'created_date': datetime.now()
}
if metric_config.get('is_kpi', False):
self.kpis[metric_id] = {
'metric_id': metric_id,
'target_value': metric_config.get('target_value', 0),
'threshold_warning': metric_config.get('threshold_warning', 0),
'threshold_critical': metric_config.get('threshold_critical', 0),
'owner': metric_config.get('owner', 'Security Team'),
'review_frequency': metric_config.get('review_frequency', 'monthly')
}
def record_measurement(self, metric_id, value, timestamp=None, metadata=None):
"""Registrar medición de métrica"""
if metric_id not in self.metrics:
return False
if timestamp is None:
timestamp = datetime.now()
measurement_id = f"MEAS-{len(self.measurements) + 1}"
self.measurements[measurement_id] = {
'measurement_id': measurement_id,
'metric_id': metric_id,
'value': value,
'timestamp': timestamp,
'metadata': metadata or {},
'quality_score': self.calculate_quality_score(value, metric_id)
}
return True
def calculate_quality_score(self, value, metric_id):
"""Calcular score de calidad de la medición"""
metric = self.metrics[metric_id]
# Verificar si el valor está dentro de rangos esperados
if metric['type'] == 'operational':
if metric['unit'] == 'hours' and value > 24:
return 0.5 # Valor sospechoso
elif metric['unit'] == 'percentage' and (value < 0 or value > 100):
return 0.0 # Valor inválido
return 1.0 # Valor válido
def calculate_metric_statistics(self, metric_id, days=30):
"""Calcular estadísticas de métrica"""
if metric_id not in self.metrics:
return None
# Obtener mediciones de los últimos N días
cutoff_date = datetime.now() - timedelta(days=days)
recent_measurements = [
m for m in self.measurements.values()
if m['metric_id'] == metric_id and m['timestamp'] >= cutoff_date
]
if not recent_measurements:
return None
values = [m['value'] for m in recent_measurements]
statistics = {
'metric_id': metric_id,
'period_days': days,
'total_measurements': len(values),
'mean': np.mean(values),
'median': np.median(values),
'std_dev': np.std(values),
'min': np.min(values),
'max': np.max(values),
'latest_value': values[-1] if values else None,
'trend': self.calculate_trend(values)
}
return statistics
def calculate_trend(self, values):
"""Calcular tendencia de valores"""
if len(values) < 2:
return 'insufficient_data'
# Calcular pendiente usando regresión lineal simple
x = np.arange(len(values))
y = np.array(values)
if len(x) > 1:
slope = np.polyfit(x, y, 1)[0]
if slope > 0.1:
return 'increasing'
elif slope < -0.1:
return 'decreasing'
else:
return 'stable'
return 'stable'
def evaluate_kpi_performance(self, kpi_id):
"""Evaluar rendimiento de KPI"""
if kpi_id not in self.kpis:
return None
kpi = self.kpis[kpi_id]
metric_id = kpi['metric_id']
# Obtener valor actual
recent_measurements = [
m for m in self.measurements.values()
if m['metric_id'] == metric_id
]
if not recent_measurements:
return None
current_value = recent_measurements[-1]['value']
target_value = kpi['target_value']
warning_threshold = kpi['threshold_warning']
critical_threshold = kpi['threshold_critical']
# Determinar estado del KPI
if current_value >= target_value:
status = 'excellent'
elif current_value >= warning_threshold:
status = 'good'
elif current_value >= critical_threshold:
status = 'warning'
else:
status = 'critical'
# Calcular desviación del objetivo
deviation = ((current_value - target_value) / target_value * 100) if target_value > 0 else 0
performance = {
'kpi_id': kpi_id,
'current_value': current_value,
'target_value': target_value,
'deviation_percentage': deviation,
'status': status,
'last_updated': recent_measurements[-1]['timestamp']
}
return performance
def generate_metrics_dashboard(self):
"""Generar dashboard de métricas"""
dashboard = {
'generated_date': datetime.now(),
'summary': {},
'kpis': {},
'alerts': [],
'recommendations': []
}
# Resumen general
total_metrics = len(self.metrics)
total_kpis = len(self.kpis)
total_measurements = len(self.measurements)
dashboard['summary'] = {
'total_metrics': total_metrics,
'total_kpis': total_kpis,
'total_measurements': total_measurements,
'last_24h_measurements': len([m for m in self.measurements.values()
if m['timestamp'] >= datetime.now() - timedelta(hours=24)])
}
# Evaluar KPIs
for kpi_id in self.kpis.keys():
performance = self.evaluate_kpi_performance(kpi_id)
if performance:
dashboard['kpis'][kpi_id] = performance
# Generar alertas
if performance['status'] in ['warning', 'critical']:
dashboard['alerts'].append({
'type': 'kpi_alert',
'kpi_id': kpi_id,
'status': performance['status'],
'message': f"KPI {kpi_id} está en estado {performance['status']}"
})
# Generar recomendaciones
dashboard['recommendations'] = self.generate_recommendations()
return dashboard
def generate_recommendations(self):
"""Generar recomendaciones basadas en métricas"""
recommendations = []
# Analizar KPIs con problemas
for kpi_id, kpi in self.kpis.items():
performance = self.evaluate_kpi_performance(kpi_id)
if performance and performance['status'] in ['warning', 'critical']:
recommendations.append({
'type': 'kpi_improvement',
'kpi_id': kpi_id,
'recommendation': f"Mejorar {kpi_id} - desviación del {performance['deviation_percentage']:.1f}%"
})
# Analizar métricas sin datos recientes
for metric_id, metric in self.metrics.items():
recent_measurements = [
m for m in self.measurements.values()
if m['metric_id'] == metric_id and
m['timestamp'] >= datetime.now() - timedelta(days=7)
]
if not recent_measurements:
recommendations.append({
'type': 'data_collection',
'metric_id': metric_id,
'recommendation': f"Recopilar datos para {metric_id} - sin mediciones recientes"
})
return recommendations
# Ejemplo de uso
metrics_mgmt = SecurityMetricsManagement()
# Definir métricas
metrics_mgmt.define_metric('METRIC-001', {
'name': 'Tiempo de Detección de Incidentes',
'description': 'Tiempo promedio para detectar incidentes de seguridad',
'category': 'operational',
'type': 'operational',
'unit': 'hours',
'frequency': 'daily',
'is_kpi': True,
'target_value': 1.0,
'threshold_warning': 2.0,
'threshold_critical': 4.0
})
metrics_mgmt.define_metric('METRIC-002', {
'name': 'Tasa de Cumplimiento',
'description': 'Porcentaje de cumplimiento de políticas de seguridad',
'category': 'strategic',
'type': 'strategic',
'unit': 'percentage',
'frequency': 'monthly',
'is_kpi': True,
'target_value': 95.0,
'threshold_warning': 90.0,
'threshold_critical': 80.0
})
# Registrar mediciones
metrics_mgmt.record_measurement('METRIC-001', 0.5, datetime.now() - timedelta(hours=1))
metrics_mgmt.record_measurement('METRIC-001', 1.2, datetime.now() - timedelta(hours=2))
metrics_mgmt.record_measurement('METRIC-002', 92.5, datetime.now() - timedelta(days=1))
# Generar dashboard
dashboard = metrics_mgmt.generate_metrics_dashboard()
print(f"Dashboard generado: {dashboard['summary']['total_metrics']} métricas")
|