Abstract Algebra is the branch of mathematics that studies abstract algebraic structures, providing the mathematical foundations for modern cryptography.

What is Abstract Algebra?

Abstract algebra studies mathematical structures such as groups, rings, fields, and modules, which are fundamental for understanding modern cryptographic algorithms.

Fundamental Algebraic Structures

Groups

  • Definition: Set with associative binary operation
  • Properties: Closure, associativity, identity element, inverses
  • Examples: Integers with addition, permutations
  • Application: Elliptic curve cryptography

Rings

  • Definition: Set with two operations (addition and multiplication)
  • Properties: Abelian group under addition, semigroup under multiplication
  • Examples: Integers, polynomials
  • Application: Lattice-based cryptography

Fields

  • Definition: Commutative ring where every nonzero element has an inverse
  • Properties: Ring + multiplicative inverses
  • Examples: Rational numbers, real numbers, complex numbers
  • Application: Symmetric and asymmetric cryptography

Groups in Cryptography

Additive Group of Integers

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class IntegerGroup:
    def __init__(self, modulus):
        self.modulus = modulus
    
    def add(self, a, b):
        """Addition in the group of integers modulo n"""
        return (a + b) % self.modulus
    
    def inverse(self, a):
        """Additive inverse"""
        return (-a) % self.modulus
    
    def identity(self):
        """Identity element"""
        return 0

# Usage example
group = IntegerGroup(13)
result = group.add(7, 8)  # 7 + 8 mod 13 = 2
inverse = group.inverse(7)  # -7 mod 13 = 6

Multiplicative Group

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class MultiplicativeGroup:
    def __init__(self, modulus):
        self.modulus = modulus
    
    def multiply(self, a, b):
        """Multiplication in the multiplicative group"""
        return (a * b) % self.modulus
    
    def inverse(self, a):
        """Multiplicative inverse using extended Euclidean algorithm"""
        def extended_gcd(a, b):
            if a == 0:
                return b, 0, 1
            gcd, x1, y1 = extended_gcd(b % a, a)
            x = y1 - (b // a) * x1
            y = x1
            return gcd, x, y
        
        gcd, x, y = extended_gcd(a, self.modulus)
        if gcd != 1:
            raise ValueError("Element has no inverse")
        return x % self.modulus
    
    def identity(self):
        """Identity element"""
        return 1

# Usage example
group = MultiplicativeGroup(13)
result = group.multiply(7, 8)  # 7 * 8 mod 13 = 4
inverse = group.inverse(7)  # 7^(-1) mod 13 = 2

Finite Fields

Finite Field GF(p)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class FiniteField:
    def __init__(self, prime):
        self.prime = prime
    
    def add(self, a, b):
        """Addition in GF(p)"""
        return (a + b) % self.prime
    
    def multiply(self, a, b):
        """Multiplication in GF(p)"""
        return (a * b) % self.prime
    
    def inverse(self, a):
        """Multiplicative inverse in GF(p)"""
        def extended_gcd(a, b):
            if a == 0:
                return b, 0, 1
            gcd, x1, y1 = extended_gcd(b % a, a)
            x = y1 - (b // a) * x1
            y = x1
            return gcd, x, y
        
        gcd, x, y = extended_gcd(a, self.prime)
        if gcd != 1:
            raise ValueError("Element has no inverse")
        return x % self.prime
    
    def power(self, a, n):
        """Exponentiation in GF(p)"""
        result = 1
        a = a % self.prime
        while n > 0:
            if n % 2 == 1:
                result = (result * a) % self.prime
            n = n >> 1
            a = (a * a) % self.prime
        return result

# Usage example
field = FiniteField(13)
result = field.multiply(7, 8)  # 7 * 8 mod 13 = 4
inverse = field.inverse(7)  # 7^(-1) mod 13 = 2
power = field.power(7, 3)  # 7^3 mod 13 = 5

Finite Field GF(2^n)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class BinaryField:
    def __init__(self, n, irreducible_poly):
        self.n = n
        self.irreducible_poly = irreducible_poly
        self.field_size = 2 ** n
    
    def add(self, a, b):
        """Addition in GF(2^n) - XOR"""
        return a ^ b
    
    def multiply(self, a, b):
        """Multiplication in GF(2^n)"""
        result = 0
        for i in range(self.n):
            if b & (1 << i):
                result ^= a << i
        
        # Reduce modulo irreducible polynomial
        return self.reduce(result)
    
    def reduce(self, poly):
        """Reduce polynomial modulo irreducible polynomial"""
        while poly >= self.field_size:
            # Find highest bit
            degree = poly.bit_length() - 1
            if degree >= self.n:
                # Subtract shifted irreducible polynomial
                shift = degree - self.n
                poly ^= self.irreducible_poly << shift
            else:
                break
        return poly

# Usage example
field = BinaryField(4, 0x13)  # x^4 + x + 1
result = field.add(0b1011, 0b1101)  # 0b0110
product = field.multiply(0b1011, 0b1101)  # 0b1001

Elliptic Curves

Elliptic Curve Group

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
class EllipticCurve:
    def __init__(self, a, b, p):
        self.a = a
        self.b = b
        self.p = p
    
    def point_add(self, P, Q):
        """Point addition on elliptic curve"""
        if P is None:
            return Q
        if Q is None:
            return P
        if P[0] == Q[0] and P[1] != Q[1]:
            return None  # Point at infinity
        
        if P == Q:
            # Point doubling
            if P[1] == 0:
                return None
            s = (3 * P[0] * P[0] + self.a) * pow(2 * P[1], -1, self.p) % self.p
        else:
            # Addition of different points
            s = (Q[1] - P[1]) * pow(Q[0] - P[0], -1, self.p) % self.p
        
        x3 = (s * s - P[0] - Q[0]) % self.p
        y3 = (s * (P[0] - x3) - P[1]) % self.p
        return (x3, y3)
    
    def point_multiply(self, k, P):
        """Scalar multiplication k * P"""
        if k == 0:
            return None
        if k == 1:
            return P
        
        result = None
        addend = P
        
        while k:
            if k & 1:
                result = self.point_add(result, addend)
            addend = self.point_add(addend, addend)
            k >>= 1
        
        return result

# Usage example
curve = EllipticCurve(2, 3, 97)  # y^2 = x^3 + 2x + 3 mod 97
P = (17, 10)
Q = (95, 31)
R = curve.point_add(P, Q)
kP = curve.point_multiply(5, P)

Polynomial Rings

Polynomial Ring

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class PolynomialRing:
    def __init__(self, field):
        self.field = field
    
    def add(self, p, q):
        """Polynomial addition"""
        max_len = max(len(p), len(q))
        result = [0] * max_len
        
        for i in range(max_len):
            a = p[i] if i < len(p) else 0
            b = q[i] if i < len(q) else 0
            result[i] = self.field.add(a, b)
        
        return self.trim(result)
    
    def multiply(self, p, q):
        """Polynomial multiplication"""
        if not p or not q:
            return []
        
        result = [0] * (len(p) + len(q) - 1)
        
        for i in range(len(p)):
            for j in range(len(q)):
                result[i + j] = self.field.add(
                    result[i + j],
                    self.field.multiply(p[i], q[j])
                )
        
        return self.trim(result)
    
    def trim(self, poly):
        """Remove trailing zero coefficients"""
        while poly and poly[-1] == 0:
            poly.pop()
        return poly

# Usage example
field = FiniteField(13)
ring = PolynomialRing(field)
p = [1, 2, 3]  # 1 + 2x + 3x^2
q = [4, 5]     # 4 + 5x
sum_poly = ring.add(p, q)  # 5 + 7x + 3x^2
product = ring.multiply(p, q)  # 4 + 13x + 22x^2 + 15x^3

Applications in Cryptography

RSA

  • Ring: Ring of integers modulo n
  • Operation: Modular exponentiation
  • Security: Factorization difficulty
  • Implementation: Finite fields

ECC

  • Group: Elliptic curve group
  • Operation: Point addition
  • Security: Discrete logarithm problem
  • Implementation: Finite fields

AES

  • Field: GF(2^8)
  • Operation: Finite field multiplication
  • Security: Confusion and diffusion
  • Implementation: Binary fields

Computational Tools

SageMath

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
# Example with SageMath
# Define finite field
F = GF(13)
a = F(7)
b = F(8)
print(a + b)  # 2
print(a * b)  # 4
print(a^(-1))  # 2

# Define elliptic curve
E = EllipticCurve(GF(97), [2, 3])
P = E(17, 10)
Q = E(95, 31)
R = P + Q
kP = 5 * P

SymPy

1
2
3
4
5
6
7
8
9
from sympy import *
from sympy.polys.domains import FF

# Define finite field
F = FF(13)
x = symbols('x')
p = Poly(x**2 + 2*x + 3, domain=F)
q = Poly(x + 4, domain=F)
result = p + q
  • Number Theory - Complementary mathematical foundations
  • RSA - Algorithm that uses abstract algebra
  • ECC - Algorithm that uses abstract algebra
  • AES - Algorithm that uses abstract algebra
  • Hash Functions - Algorithms that use abstract algebra
  • Post-Quantum Cryptography - Cryptography that uses abstract algebra
  • CISO - Role that oversees abstract algebra
  • General Cybersecurity - Discipline that includes abstract algebra
  • Security Breaches - Incidents that affect abstract algebra
  • Attack Vectors - Attacks against abstract algebra
  • Incident Response - Process that includes abstract algebra
  • SIEM - System that monitors abstract algebra
  • SOAR - Automation that manages abstract algebra
  • EDR - Tool that protects abstract algebra
  • Firewall - Device that complements abstract algebra
  • VPN - Connection that uses abstract algebra
  • Dashboards - Visualization of abstract algebra metrics
  • Logs - Abstract algebra operation logs

References