Due Diligence (also “Security Due Diligence” or “Third-Party Security Assessment”) is the process of comprehensive evaluation of the security posture of suppliers, business partners, and third parties to identify and mitigate security risks in the supply chain. This process is fundamental in third-party risk management (TPRM) and typically includes reviewing security policies, certifications, incident history, technical controls, and regulatory compliance of suppliers, being essential for making informed decisions about business relationships and protecting the organization against risks associated with suppliers and business partners.

What is Security Due Diligence?

Security Due Diligence is a systematic investigation and evaluation of third parties’ security capabilities before establishing business relationships, ensuring they meet required security standards and do not introduce significant risks.

Process Components

Initial Evaluation

  • Risk Analysis: Assessment of third party’s risk level
  • Capability Review: Analysis of security capabilities
  • Certification Verification: Validation of security certifications
  • Reputation Assessment: Analysis of security reputation

Technical Evaluation

  • Security Audit: Technical evaluation of controls
  • Penetration Testing: External security testing
  • Architecture Review: Security architecture analysis
  • Incident Evaluation: Incident history review

Continuous Evaluation

  • Continuous Monitoring: Monitoring of security posture
  • Periodic Review: Regular evaluations
  • Evaluation Updates: Updates based on changes
  • Incident Management: Response to third-party incidents

Due Diligence System

Evaluation Management

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import requests
import json

class DueDiligenceManagement:
    def __init__(self):
        self.third_parties = {}
        self.evaluations = {}
        self.risk_categories = {
            'critical': {'score': 4, 'description': 'Access to critical systems'},
            'high': {'score': 3, 'description': 'Access to sensitive data'},
            'medium': {'score': 2, 'description': 'Limited access to systems'},
            'low': {'score': 1, 'description': 'Minimal or no access'}
        }
        
        self.evaluation_criteria = {
            'security_policies': {'weight': 0.2, 'max_score': 100},
            'technical_controls': {'weight': 0.3, 'max_score': 100},
            'incident_response': {'weight': 0.15, 'max_score': 100},
            'compliance': {'weight': 0.2, 'max_score': 100},
            'business_continuity': {'weight': 0.15, 'max_score': 100}
        }
    
    def register_third_party(self, party_id, party_data):
        """Register third party"""
        self.third_parties[party_id] = {
            'party_id': party_id,
            'name': party_data['name'],
            'type': party_data['type'],
            'industry': party_data.get('industry', 'unknown'),
            'risk_level': party_data.get('risk_level', 'medium'),
            'services': party_data.get('services', []),
            'data_access': party_data.get('data_access', 'none'),
            'system_access': party_data.get('system_access', 'none'),
            'contact_info': party_data.get('contact_info', {}),
            'registration_date': datetime.now(),
            'status': 'pending_evaluation'
        }
    
    def create_evaluation(self, evaluation_id, party_id, evaluation_config):
        """Create due diligence evaluation"""
        if party_id not in self.third_parties:
            return False
        
        evaluation = {
            'evaluation_id': evaluation_id,
            'party_id': party_id,
            'evaluation_type': evaluation_config['type'],
            'scope': evaluation_config['scope'],
            'evaluator': evaluation_config['evaluator'],
            'start_date': evaluation_config.get('start_date', datetime.now()),
            'due_date': evaluation_config.get('due_date'),
            'status': 'in_progress',
            'scores': {},
            'findings': [],
            'recommendations': [],
            'overall_score': 0,
            'risk_assessment': {}
        }
        
        self.evaluations[evaluation_id] = evaluation
        return True
    
    def conduct_security_assessment(self, evaluation_id, assessment_data):
        """Conduct security assessment"""
        if evaluation_id not in self.evaluations:
            return False
        
        evaluation = self.evaluations[evaluation_id]
        party = self.third_parties[evaluation['party_id']]
        
        # Evaluate each criterion
        scores = {}
        findings = []
        
        for criterion, config in self.evaluation_criteria.items():
            score = self.evaluate_criterion(criterion, assessment_data, party)
            scores[criterion] = score
            
            # Generate findings
            if score < 70:
                findings.append({
                    'criterion': criterion,
                    'score': score,
                    'severity': 'high' if score < 50 else 'medium',
                    'description': f"Low score in {criterion}: {score}/100"
                })
        
        # Calculate overall score
        overall_score = sum(scores[criterion] * config['weight'] 
                          for criterion, config in self.evaluation_criteria.items())
        
        # Assess risk
        risk_assessment = self.assess_risk(party, scores, findings)
        
        # Update evaluation
        evaluation['scores'] = scores
        evaluation['findings'] = findings
        evaluation['overall_score'] = overall_score
        evaluation['risk_assessment'] = risk_assessment
        evaluation['status'] = 'completed'
        evaluation['completion_date'] = datetime.now()
        
        return True
    
    def evaluate_criterion(self, criterion, assessment_data, party):
        """Evaluate specific criterion"""
        if criterion == 'security_policies':
            return self.evaluate_security_policies(assessment_data)
        elif criterion == 'technical_controls':
            return self.evaluate_technical_controls(assessment_data)
        elif criterion == 'incident_response':
            return self.evaluate_incident_response(assessment_data)
        elif criterion == 'compliance':
            return self.evaluate_compliance(assessment_data)
        elif criterion == 'business_continuity':
            return self.evaluate_business_continuity(assessment_data)
        else:
            return 0
    
    def evaluate_security_policies(self, assessment_data):
        """Evaluate security policies"""
        score = 0
        
        # Check policy existence
        if assessment_data.get('has_security_policy'):
            score += 20
        
        if assessment_data.get('has_incident_response_policy'):
            score += 20
        
        if assessment_data.get('has_data_protection_policy'):
            score += 20
        
        if assessment_data.get('has_access_control_policy'):
            score += 20
        
        if assessment_data.get('has_business_continuity_plan'):
            score += 20
        
        return min(score, 100)
    
    def evaluate_technical_controls(self, assessment_data):
        """Evaluate technical controls"""
        score = 0
        
        # Check network controls
        if assessment_data.get('has_firewall'):
            score += 15
        
        if assessment_data.get('has_intrusion_detection'):
            score += 15
        
        if assessment_data.get('has_antivirus'):
            score += 10
        
        # Check access controls
        if assessment_data.get('has_mfa'):
            score += 15
        
        if assessment_data.get('has_privileged_access_management'):
            score += 15
        
        # Check monitoring
        if assessment_data.get('has_siem'):
            score += 15
        
        if assessment_data.get('has_logging'):
            score += 15
        
        return min(score, 100)
    
    def evaluate_incident_response(self, assessment_data):
        """Evaluate incident response"""
        score = 0
        
        if assessment_data.get('has_incident_response_team'):
            score += 25
        
        if assessment_data.get('has_incident_response_procedures'):
            score += 25
        
        if assessment_data.get('has_communication_plan'):
            score += 25
        
        if assessment_data.get('has_forensic_capabilities'):
            score += 25
        
        return min(score, 100)
    
    def evaluate_compliance(self, assessment_data):
        """Evaluate compliance"""
        score = 0
        
        # Check certifications
        certifications = assessment_data.get('certifications', [])
        if 'ISO_27001' in certifications:
            score += 30
        
        if 'SOC_2' in certifications:
            score += 25
        
        if 'PCI_DSS' in certifications:
            score += 20
        
        if 'GDPR' in certifications:
            score += 25
        
        return min(score, 100)
    
    def evaluate_business_continuity(self, assessment_data):
        """Evaluate business continuity"""
        score = 0
        
        if assessment_data.get('has_business_continuity_plan'):
            score += 25
        
        if assessment_data.get('has_disaster_recovery_plan'):
            score += 25
        
        if assessment_data.get('has_backup_systems'):
            score += 25
        
        if assessment_data.get('has_alternate_sites'):
            score += 25
        
        return min(score, 100)
    
    def assess_risk(self, party, scores, findings):
        """Assess third party risk"""
        # Calculate risk based on scores
        overall_score = sum(scores.values()) / len(scores)
        
        # Adjust by access level
        access_risk = self.risk_categories.get(party['risk_level'], {}).get('score', 2)
        
        # Adjust by critical findings
        critical_findings = len([f for f in findings if f['severity'] == 'high'])
        
        # Calculate final risk
        risk_score = (100 - overall_score) * access_risk + (critical_findings * 10)
        
        if risk_score >= 80:
            risk_level = 'critical'
        elif risk_score >= 60:
            risk_level = 'high'
        elif risk_score >= 40:
            risk_level = 'medium'
        else:
            risk_level = 'low'
        
        return {
            'risk_score': risk_score,
            'risk_level': risk_level,
            'access_risk': access_risk,
            'critical_findings': critical_findings,
            'mitigation_required': risk_level in ['critical', 'high']
        }
    
    def generate_evaluation_report(self, evaluation_id):
        """Generate evaluation report"""
        if evaluation_id not in self.evaluations:
            return None
        
        evaluation = self.evaluations[evaluation_id]
        party = self.third_parties[evaluation['party_id']]
        
        report = {
            'evaluation_id': evaluation_id,
            'party_name': party['name'],
            'evaluation_date': evaluation['completion_date'],
            'overall_score': evaluation['overall_score'],
            'risk_assessment': evaluation['risk_assessment'],
            'scores_by_criterion': evaluation['scores'],
            'findings': evaluation['findings'],
            'recommendations': self.generate_recommendations(evaluation),
            'approval_status': self.determine_approval_status(evaluation)
        }
        
        return report
    
    def generate_recommendations(self, evaluation):
        """Generate recommendations based on evaluation"""
        recommendations = []
        
        # Recommendations based on low scores
        for criterion, score in evaluation['scores'].items():
            if score < 70:
                recommendations.append({
                    'type': 'improvement',
                    'criterion': criterion,
                    'description': f"Improve {criterion} - current score: {score}/100",
                    'priority': 'high' if score < 50 else 'medium'
                })
        
        # Recommendations based on risk
        risk_level = evaluation['risk_assessment']['risk_level']
        if risk_level in ['critical', 'high']:
            recommendations.append({
                'type': 'risk_mitigation',
                'description': f"Implement additional controls - {risk_level} risk",
                'priority': 'critical'
            })
        
        # Recommendations based on findings
        critical_findings = [f for f in evaluation['findings'] if f['severity'] == 'high']
        if critical_findings:
            recommendations.append({
                'type': 'immediate_action',
                'description': f"Address {len(critical_findings)} critical findings immediately",
                'priority': 'critical'
            })
        
        return recommendations
    
    def determine_approval_status(self, evaluation):
        """Determine approval status"""
        overall_score = evaluation['overall_score']
        risk_level = evaluation['risk_assessment']['risk_level']
        critical_findings = len([f for f in evaluation['findings'] if f['severity'] == 'high'])
        
        if overall_score >= 80 and risk_level in ['low', 'medium'] and critical_findings == 0:
            return 'approved'
        elif overall_score >= 70 and risk_level in ['low', 'medium', 'high'] and critical_findings <= 2:
            return 'approved_with_conditions'
        elif overall_score >= 60 and risk_level in ['low', 'medium'] and critical_findings <= 5:
            return 'pending_review'
        else:
            return 'rejected'

# Usage example
dd_mgmt = DueDiligenceManagement()

# Register third party
dd_mgmt.register_third_party('TP-001', {
    'name': 'Cloud Services Provider',
    'type': 'cloud_provider',
    'industry': 'technology',
    'risk_level': 'high',
    'services': ['cloud_infrastructure', 'data_storage'],
    'data_access': 'sensitive',
    'system_access': 'limited'
})

# Create evaluation
dd_mgmt.create_evaluation('EVAL-001', 'TP-001', {
    'type': 'comprehensive',
    'scope': 'full_security_assessment',
    'evaluator': 'Security Team',
    'due_date': datetime.now() + timedelta(days=30)
})

# Conduct assessment
assessment_data = {
    'has_security_policy': True,
    'has_incident_response_policy': True,
    'has_data_protection_policy': True,
    'has_access_control_policy': True,
    'has_business_continuity_plan': False,
    'has_firewall': True,
    'has_intrusion_detection': True,
    'has_antivirus': True,
    'has_mfa': True,
    'has_privileged_access_management': False,
    'has_siem': True,
    'has_logging': True,
    'has_incident_response_team': True,
    'has_incident_response_procedures': True,
    'has_communication_plan': True,
    'has_forensic_capabilities': False,
    'certifications': ['ISO_27001', 'SOC_2'],
    'has_business_continuity_plan': False,
    'has_disaster_recovery_plan': True,
    'has_backup_systems': True,
    'has_alternate_sites': False
}

dd_mgmt.conduct_security_assessment('EVAL-001', assessment_data)

# Generate report
report = dd_mgmt.generate_evaluation_report('EVAL-001')
print(f"Evaluation report: {report['overall_score']}/100")
print(f"Approval status: {report['approval_status']}")

Continuous Monitoring

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class ContinuousMonitoring:
    def __init__(self):
        self.monitoring_rules = {}
        self.alerts = {}
        self.third_party_status = {}
        self.risk_updates = {}
    
    def setup_monitoring(self, party_id, monitoring_config):
        """Setup monitoring for third party"""
        self.monitoring_rules[party_id] = {
            'party_id': party_id,
            'monitoring_type': monitoring_config['type'],
            'frequency': monitoring_config['frequency'],
            'criteria': monitoring_config['criteria'],
            'alert_thresholds': monitoring_config['alert_thresholds'],
            'enabled': True,
            'last_check': None
        }
    
    def check_third_party_status(self, party_id):
        """Check third party status"""
        if party_id not in self.monitoring_rules:
            return None
        
        rule = self.monitoring_rules[party_id]
        
        # Simulate status check
        status_check = {
            'party_id': party_id,
            'check_date': datetime.now(),
            'security_score': np.random.randint(60, 100),
            'incident_count': np.random.randint(0, 5),
            'compliance_status': np.random.choice(['compliant', 'non_compliant', 'pending']),
            'certification_status': np.random.choice(['valid', 'expired', 'pending_renewal']),
            'overall_status': 'good'
        }
        
        # Determine overall status
        if (status_check['security_score'] < 70 or 
            status_check['incident_count'] > 3 or 
            status_check['compliance_status'] == 'non_compliant'):
            status_check['overall_status'] = 'warning'
        
        if (status_check['security_score'] < 50 or 
            status_check['incident_count'] > 5 or 
            status_check['certification_status'] == 'expired'):
            status_check['overall_status'] = 'critical'
        
        # Check alerts
        self.check_alerts(party_id, status_check)
        
        # Update status
        self.third_party_status[party_id] = status_check
        rule['last_check'] = datetime.now()
        
        return status_check
    
    def check_alerts(self, party_id, status_check):
        """Check alerts for third party"""
        rule = self.monitoring_rules[party_id]
        thresholds = rule['alert_thresholds']
        
        alerts = []
        
        # Check thresholds
        if status_check['security_score'] < thresholds.get('security_score_min', 70):
            alerts.append({
                'type': 'security_score_low',
                'severity': 'high',
                'message': f"Low security score: {status_check['security_score']}"
            })
        
        if status_check['incident_count'] > thresholds.get('incident_count_max', 3):
            alerts.append({
                'type': 'high_incident_count',
                'severity': 'medium',
                'message': f"High number of incidents: {status_check['incident_count']}"
            })
        
        if status_check['compliance_status'] == 'non_compliant':
            alerts.append({
                'type': 'compliance_issue',
                'severity': 'high',
                'message': "Compliance status: non-compliant"
            })
        
        if status_check['certification_status'] == 'expired':
            alerts.append({
                'type': 'certification_expired',
                'severity': 'critical',
                'message': "Certification expired"
            })
        
        # Record alerts
        for alert in alerts:
            alert_id = f"ALERT-{len(self.alerts) + 1}"
            self.alerts[alert_id] = {
                'alert_id': alert_id,
                'party_id': party_id,
                'timestamp': datetime.now(),
                'status': 'active',
                **alert
            }
    
    def get_active_alerts(self, party_id=None):
        """Get active alerts"""
        if party_id:
            return [alert for alert in self.alerts.values() 
                   if alert['party_id'] == party_id and alert['status'] == 'active']
        else:
            return [alert for alert in self.alerts.values() if alert['status'] == 'active']
    
    def update_risk_assessment(self, party_id, risk_factors):
        """Update risk assessment"""
        self.risk_updates[party_id] = {
            'party_id': party_id,
            'update_date': datetime.now(),
            'risk_factors': risk_factors,
            'risk_level': self.calculate_updated_risk(risk_factors)
        }
    
    def calculate_updated_risk(self, risk_factors):
        """Calculate updated risk"""
        risk_score = 0
        
        # Risk factors
        if risk_factors.get('security_incidents', 0) > 3:
            risk_score += 30
        
        if risk_factors.get('compliance_violations', 0) > 0:
            risk_score += 40
        
        if risk_factors.get('certification_issues', False):
            risk_score += 20
        
        if risk_factors.get('financial_instability', False):
            risk_score += 25
        
        if risk_factors.get('management_changes', False):
            risk_score += 15
        
        # Determine risk level
        if risk_score >= 80:
            return 'critical'
        elif risk_score >= 60:
            return 'high'
        elif risk_score >= 40:
            return 'medium'
        else:
            return 'low'
    
    def generate_monitoring_report(self, party_id=None):
        """Generate monitoring report"""
        if party_id:
            parties = [party_id]
        else:
            parties = list(self.monitoring_rules.keys())
        
        report = {
            'report_date': datetime.now(),
            'monitored_parties': len(parties),
            'party_status': {},
            'active_alerts': [],
            'risk_updates': {},
            'recommendations': []
        }
        
        # Status of each third party
        for party in parties:
            if party in self.third_party_status:
                report['party_status'][party] = self.third_party_status[party]
        
        # Active alerts
        report['active_alerts'] = self.get_active_alerts(party_id)
        
        # Risk updates
        for party in parties:
            if party in self.risk_updates:
                report['risk_updates'][party] = self.risk_updates[party]
        
        # Generate recommendations
        report['recommendations'] = self.generate_monitoring_recommendations(parties)
        
        return report
    
    def generate_monitoring_recommendations(self, parties):
        """Generate monitoring recommendations"""
        recommendations = []
        
        # Analyze active alerts
        active_alerts = self.get_active_alerts()
        if len(active_alerts) > 5:
            recommendations.append({
                'type': 'alert_management',
                'priority': 'high',
                'description': f"Manage {len(active_alerts)} active alerts"
            })
        
        # Analyze problematic third parties
        problematic_parties = []
        for party in parties:
            if party in self.third_party_status:
                status = self.third_party_status[party]
                if status['overall_status'] in ['warning', 'critical']:
                    problematic_parties.append(party)
        
        if problematic_parties:
            recommendations.append({
                'type': 'party_review',
                'priority': 'medium',
                'description': f"Review {len(problematic_parties)} problematic third parties"
            })
        
        return recommendations

# Usage example
monitoring = ContinuousMonitoring()

# Setup monitoring
monitoring.setup_monitoring('TP-001', {
    'type': 'comprehensive',
    'frequency': 'weekly',
    'criteria': ['security_score', 'incident_count', 'compliance_status'],
    'alert_thresholds': {
        'security_score_min': 70,
        'incident_count_max': 3
    }
})

# Check status
status = monitoring.check_third_party_status('TP-001')
print(f"Third party status: {status['overall_status']}")

# Get active alerts
alerts = monitoring.get_active_alerts('TP-001')
print(f"Active alerts: {len(alerts)}")

# Generate report
report = monitoring.generate_monitoring_report('TP-001')
print(f"Monitoring report: {report['monitored_parties']} monitored third parties")

Best Practices

Initial Evaluation

  • Clear Criteria: Clear and objective evaluation criteria
  • Documentation: Complete documentation of findings
  • Verification: Independent verification of information
  • Transparency: Transparency in the process

Continuous Evaluation

  • Regular Monitoring: Regular status monitoring
  • Updates: Evaluation updates
  • Quick Response: Quick response to changes
  • Communication: Effective communication with third parties

Risk Management

  • Mitigation: Implementation of mitigation controls
  • Contingency: Contingency plans
  • Escalation: Escalation processes
  • Review: Regular risk review

References