Organizational Resilience (also “Business Resilience” or “Organizational Adaptability”) is an organization’s ability to anticipate, prepare for, respond to, and adapt to disruptive changes, crises, and adversities, maintaining its functioning and thriving in uncertain environments. This capacity is fundamental for long-term survival and success and requires the implementation of business continuity strategies, risk management, disaster recovery plans, and organizational culture that fosters adaptability and continuous learning, allowing organizations not only to survive crises but also to seize opportunities that arise from disruptive changes.

What is Organizational Resilience?

Organizational resilience is the holistic capacity of an organization to resist, absorb, adapt to, and recover from disturbances, maintaining its identity, function, and structure, while adapting to new conditions.

Resilience Dimensions

Operational Resilience

  • Operations Continuity: Maintenance of critical operations
  • Operational Flexibility: Ability to adapt processes
  • Redundancy: Backup systems and alternatives
  • Automation: Automation of critical processes

Technological Resilience

  • Resilient Architecture: Design of resistant systems
  • Cybersecurity: Protection against digital threats
  • Data Recovery: Ability to restore information
  • Continuous Monitoring: Constant system observation

Human Resilience

  • Adaptive Leadership: Leadership that adapts to changes
  • Learning Culture: Organization that learns continuously
  • Training and Development: Personnel capacity development
  • Effective Communication: Clear and transparent communication

Strategic Resilience

  • Adaptive Vision: Vision that adapts to changes
  • Flexible Strategy: Strategy that can adjust
  • Continuous Innovation: Ability to innovate constantly
  • Risk Management: Proactive risk identification and management

Resilience Management System

Resilience Management

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import json

class OrganizationalResilienceManagement:
    def __init__(self):
        self.resilience_framework = {}
        self.resilience_assessments = {}
        self.resilience_metrics = {}
        self.improvement_plans = {}
        self.crisis_scenarios = {}
        self.resilience_training = {}
    
    def create_resilience_framework(self, framework_id, framework_config):
        """Create organizational resilience framework"""
        self.resilience_framework[framework_id] = {
            'framework_id': framework_id,
            'name': framework_config['name'],
            'description': framework_config['description'],
            'dimensions': framework_config.get('dimensions', []),
            'capabilities': framework_config.get('capabilities', []),
            'indicators': framework_config.get('indicators', []),
            'assessment_criteria': framework_config.get('assessment_criteria', []),
            'improvement_areas': framework_config.get('improvement_areas', []),
            'maturity_levels': framework_config.get('maturity_levels', []),
            'created_date': datetime.now()
        }
    
    def conduct_resilience_assessment(self, assessment_id, assessment_config):
        """Conduct resilience assessment"""
        self.resilience_assessments[assessment_id] = {
            'assessment_id': assessment_id,
            'framework_id': assessment_config['framework_id'],
            'assessment_date': datetime.now(),
            'assessor': assessment_config['assessor'],
            'scope': assessment_config['scope'],
            'dimensions_assessed': assessment_config.get('dimensions_assessed', []),
            'scores': {},
            'strengths': [],
            'weaknesses': [],
            'opportunities': [],
            'threats': [],
            'overall_score': 0,
            'maturity_level': 'initial',
            'recommendations': []
        }
        
        # Calculate scores per dimension
        for dimension in assessment_config.get('dimensions_assessed', []):
            dimension_score = self.calculate_dimension_score(dimension, assessment_config)
            self.resilience_assessments[assessment_id]['scores'][dimension] = dimension_score
        
        # Calculate overall score
        if self.resilience_assessments[assessment_id]['scores']:
            overall_score = sum(self.resilience_assessments[assessment_id]['scores'].values()) / len(self.resilience_assessments[assessment_id]['scores'])
            self.resilience_assessments[assessment_id]['overall_score'] = overall_score
        
        # Determine maturity level
        maturity_level = self.determine_maturity_level(overall_score)
        self.resilience_assessments[assessment_id]['maturity_level'] = maturity_level
        
        # Generate recommendations
        recommendations = self.generate_resilience_recommendations(assessment_id)
        self.resilience_assessments[assessment_id]['recommendations'] = recommendations
        
        return assessment_id
    
    def calculate_dimension_score(self, dimension, assessment_config):
        """Calculate specific dimension score"""
        dimension_scores = {
            'operational': {
                'continuity_planning': assessment_config.get('continuity_planning_score', 0),
                'process_flexibility': assessment_config.get('process_flexibility_score', 0),
                'redundancy': assessment_config.get('redundancy_score', 0),
                'automation': assessment_config.get('automation_score', 0)
            },
            'technological': {
                'system_architecture': assessment_config.get('system_architecture_score', 0),
                'cybersecurity': assessment_config.get('cybersecurity_score', 0),
                'data_recovery': assessment_config.get('data_recovery_score', 0),
                'monitoring': assessment_config.get('monitoring_score', 0)
            },
            'human': {
                'adaptive_leadership': assessment_config.get('adaptive_leadership_score', 0),
                'learning_culture': assessment_config.get('learning_culture_score', 0),
                'training_development': assessment_config.get('training_development_score', 0),
                'communication': assessment_config.get('communication_score', 0)
            },
            'strategic': {
                'adaptive_vision': assessment_config.get('adaptive_vision_score', 0),
                'flexible_strategy': assessment_config.get('flexible_strategy_score', 0),
                'continuous_innovation': assessment_config.get('continuous_innovation_score', 0),
                'risk_management': assessment_config.get('risk_management_score', 0)
            }
        }
        
        if dimension in dimension_scores:
            scores = dimension_scores[dimension]
            return sum(scores.values()) / len(scores) if scores else 0
        
        return 0
    
    def determine_maturity_level(self, overall_score):
        """Determine maturity level based on score"""
        if overall_score >= 90:
            return 'optimizing'
        elif overall_score >= 75:
            return 'managed'
        elif overall_score >= 60:
            return 'defined'
        elif overall_score >= 40:
            return 'repeatable'
        else:
            return 'initial'
    
    def generate_resilience_recommendations(self, assessment_id):
        """Generate resilience recommendations"""
        if assessment_id not in self.resilience_assessments:
            return []
        
        assessment = self.resilience_assessments[assessment_id]
        recommendations = []
        
        # Recommendations based on low scores
        for dimension, score in assessment['scores'].items():
            if score < 60:
                recommendations.append({
                    'dimension': dimension,
                    'priority': 'high',
                    'description': f"Improve {dimension} resilience (score: {score:.1f})",
                    'action': f"Develop {dimension} resilience capabilities"
                })
            elif score < 75:
                recommendations.append({
                    'dimension': dimension,
                    'priority': 'medium',
                    'description': f"Optimize {dimension} resilience (score: {score:.1f})",
                    'action': f"Enhance {dimension} resilience capabilities"
                })
        
        # Recommendations based on maturity level
        maturity_level = assessment['maturity_level']
        if maturity_level == 'initial':
            recommendations.append({
                'dimension': 'overall',
                'priority': 'critical',
                'description': 'Establish organizational resilience foundations',
                'action': 'Develop basic resilience framework and capabilities'
            })
        elif maturity_level == 'repeatable':
            recommendations.append({
                'dimension': 'overall',
                'priority': 'high',
                'description': 'Standardize resilience processes',
                'action': 'Standardize resilience processes and procedures'
            })
        elif maturity_level == 'defined':
            recommendations.append({
                'dimension': 'overall',
                'priority': 'medium',
                'description': 'Manage and measure resilience',
                'action': 'Implement resilience management and measurement'
            })
        elif maturity_level == 'managed':
            recommendations.append({
                'dimension': 'overall',
                'priority': 'low',
                'description': 'Optimize organizational resilience',
                'action': 'Optimize organizational resilience capabilities'
            })
        
        return recommendations
    
    def create_improvement_plan(self, plan_id, plan_config):
        """Create resilience improvement plan"""
        self.improvement_plans[plan_id] = {
            'plan_id': plan_id,
            'name': plan_config['name'],
            'description': plan_config['description'],
            'assessment_id': plan_config['assessment_id'],
            'improvement_areas': plan_config.get('improvement_areas', []),
            'objectives': plan_config.get('objectives', []),
            'actions': plan_config.get('actions', []),
            'timeline': plan_config.get('timeline', {}),
            'resources': plan_config.get('resources', []),
            'success_metrics': plan_config.get('success_metrics', []),
            'status': 'draft',
            'created_date': datetime.now(),
            'last_updated': datetime.now()
        }
    
    def track_improvement_progress(self, plan_id, progress_data):
        """Track improvement progress"""
        if plan_id not in self.improvement_plans:
            return False
        
        plan = self.improvement_plans[plan_id]
        
        progress_entry = {
            'progress_id': f"PROG-{len(plan.get('progress_entries', [])) + 1}",
            'date': datetime.now(),
            'completed_actions': progress_data.get('completed_actions', []),
            'in_progress_actions': progress_data.get('in_progress_actions', []),
            'blocked_actions': progress_data.get('blocked_actions', []),
            'metrics_achieved': progress_data.get('metrics_achieved', {}),
            'challenges': progress_data.get('challenges', []),
            'next_steps': progress_data.get('next_steps', []),
            'overall_progress': progress_data.get('overall_progress', 0)
        }
        
        if 'progress_entries' not in plan:
            plan['progress_entries'] = []
        
        plan['progress_entries'].append(progress_entry)
        
        # Update plan status
        if progress_entry['overall_progress'] >= 100:
            plan['status'] = 'completed'
        elif progress_entry['overall_progress'] > 0:
            plan['status'] = 'in_progress'
        
        plan['last_updated'] = datetime.now()
        
        return True
    
    def create_crisis_scenario(self, scenario_id, scenario_config):
        """Create crisis scenario for testing"""
        self.crisis_scenarios[scenario_id] = {
            'scenario_id': scenario_id,
            'name': scenario_config['name'],
            'description': scenario_config['description'],
            'crisis_type': scenario_config['crisis_type'],
            'severity_level': scenario_config['severity_level'],
            'affected_systems': scenario_config.get('affected_systems', []),
            'affected_processes': scenario_config.get('affected_processes', []),
            'timeline': scenario_config.get('timeline', {}),
            'challenges': scenario_config.get('challenges', []),
            'success_criteria': scenario_config.get('success_criteria', []),
            'learning_objectives': scenario_config.get('learning_objectives', []),
            'created_date': datetime.now()
        }
    
    def conduct_resilience_training(self, training_id, training_config):
        """Conduct resilience training"""
        self.resilience_training[training_id] = {
            'training_id': training_id,
            'name': training_config['name'],
            'description': training_config['description'],
            'training_type': training_config['training_type'],
            'participants': training_config.get('participants', []),
            'scenario_id': training_config.get('scenario_id'),
            'duration_hours': training_config.get('duration_hours', 4),
            'scheduled_date': training_config.get('scheduled_date'),
            'status': 'scheduled',
            'results': {},
            'created_date': datetime.now()
        }
    
    def execute_resilience_training(self, training_id, execution_data):
        """Execute resilience training"""
        if training_id not in self.resilience_training:
            return False
        
        training = self.resilience_training[training_id]
        
        training['status'] = 'in_progress'
        training['start_time'] = datetime.now()
        
        # Simulate training execution
        training_results = {
            'training_id': training_id,
            'start_time': training['start_time'],
            'end_time': training['start_time'] + timedelta(hours=training['duration_hours']),
            'participants_attended': len(execution_data.get('participants_attended', [])),
            'scenarios_completed': len(execution_data.get('scenarios_completed', [])),
            'learning_objectives_met': len(execution_data.get('learning_objectives_met', [])),
            'participant_feedback': execution_data.get('participant_feedback', {}),
            'instructor_feedback': execution_data.get('instructor_feedback', {}),
            'improvement_areas': execution_data.get('improvement_areas', []),
            'overall_success': execution_data.get('overall_success', False),
            'effectiveness_score': execution_data.get('effectiveness_score', 0)
        }
        
        training['results'] = training_results
        training['status'] = 'completed'
        training['end_time'] = training_results['end_time']
        
        return True
    
    def calculate_resilience_metrics(self, framework_id):
        """Calculate resilience metrics"""
        if framework_id not in self.resilience_framework:
            return None
        
        # Get framework assessments
        framework_assessments = [a for a in self.resilience_assessments.values() if a['framework_id'] == framework_id]
        
        if not framework_assessments:
            return None
        
        # Calculate metrics
        total_assessments = len(framework_assessments)
        avg_overall_score = sum(a['overall_score'] for a in framework_assessments) / total_assessments
        
        # Maturity level distribution
        maturity_distribution = {}
        for assessment in framework_assessments:
            maturity = assessment['maturity_level']
            if maturity not in maturity_distribution:
                maturity_distribution[maturity] = 0
            maturity_distribution[maturity] += 1
        
        # Improvement trends
        recent_assessments = [a for a in framework_assessments if a['assessment_date'] >= datetime.now() - timedelta(days=90)]
        if len(recent_assessments) >= 2:
            recent_scores = [a['overall_score'] for a in recent_assessments]
            trend = 'improving' if recent_scores[-1] > recent_scores[0] else 'declining'
        else:
            trend = 'stable'
        
        # Get active improvement plans
        active_plans = [p for p in self.improvement_plans.values() if p['status'] == 'in_progress']
        
        # Get recent training
        recent_training = [t for t in self.resilience_training.values() if t.get('scheduled_date', datetime.min) >= datetime.now() - timedelta(days=30)]
        
        metrics = {
            'framework_id': framework_id,
            'total_assessments': total_assessments,
            'avg_overall_score': avg_overall_score,
            'maturity_distribution': maturity_distribution,
            'trend': trend,
            'active_improvement_plans': len(active_plans),
            'recent_training_sessions': len(recent_training),
            'resilience_level': self.determine_resilience_level(avg_overall_score)
        }
        
        return metrics
    
    def determine_resilience_level(self, avg_score):
        """Determine resilience level based on average score"""
        if avg_score >= 85:
            return 'highly_resilient'
        elif avg_score >= 70:
            return 'resilient'
        elif avg_score >= 55:
            return 'moderately_resilient'
        elif avg_score >= 40:
            return 'developing_resilience'
        else:
            return 'low_resilience'
    
    def generate_resilience_report(self, framework_id):
        """Generate resilience report"""
        if framework_id not in self.resilience_framework:
            return None
        
        framework = self.resilience_framework[framework_id]
        metrics = self.calculate_resilience_metrics(framework_id)
        
        if not metrics:
            return None
        
        # Get recent assessments
        recent_assessments = [a for a in self.resilience_assessments.values() if a['framework_id'] == framework_id and a['assessment_date'] >= datetime.now() - timedelta(days=90)]
        
        # Get improvement plans
        improvement_plans = [p for p in self.improvement_plans.values() if p['assessment_id'] in [a['assessment_id'] for a in recent_assessments]]
        
        # Generate strategic recommendations
        strategic_recommendations = self.generate_strategic_recommendations(metrics, recent_assessments, improvement_plans)
        
        report = {
            'framework_id': framework_id,
            'framework_name': framework['name'],
            'report_date': datetime.now(),
            'metrics': metrics,
            'recent_assessments': len(recent_assessments),
            'improvement_plans': len(improvement_plans),
            'strategic_recommendations': strategic_recommendations,
            'next_steps': self.generate_resilience_next_steps(metrics, strategic_recommendations)
        }
        
        return report
    
    def generate_strategic_recommendations(self, metrics, assessments, improvement_plans):
        """Generate strategic recommendations"""
        recommendations = []
        
        # Recommendations based on resilience level
        resilience_level = metrics['resilience_level']
        
        if resilience_level == 'low_resilience':
            recommendations.append({
                'type': 'foundational_development',
                'priority': 'critical',
                'description': 'Develop organizational resilience foundations',
                'action': 'Implement comprehensive resilience framework'
            })
        elif resilience_level == 'developing_resilience':
            recommendations.append({
                'type': 'capability_building',
                'priority': 'high',
                'description': 'Build resilience capabilities',
                'action': 'Focus on building specific resilience capabilities'
            })
        elif resilience_level == 'moderately_resilient':
            recommendations.append({
                'type': 'optimization',
                'priority': 'medium',
                'description': 'Optimize existing resilience capabilities',
                'action': 'Optimize and enhance current resilience capabilities'
            })
        elif resilience_level == 'resilient':
            recommendations.append({
                'type': 'continuous_improvement',
                'priority': 'low',
                'description': 'Maintain and improve resilience',
                'action': 'Maintain and continuously improve resilience'
            })
        
        # Recommendations based on trends
        if metrics['trend'] == 'declining':
            recommendations.append({
                'type': 'trend_reversal',
                'priority': 'high',
                'description': 'Reverse declining resilience trend',
                'action': 'Investigate and address factors causing decline'
            })
        
        # Recommendations based on improvement plans
        if metrics['active_improvement_plans'] == 0:
            recommendations.append({
                'type': 'improvement_planning',
                'priority': 'medium',
                'description': 'Develop resilience improvement plans',
                'action': 'Create and implement improvement plans'
            })
        
        return recommendations
    
    def generate_resilience_next_steps(self, metrics, recommendations):
        """Generate next steps for resilience"""
        next_steps = []
        
        critical_recommendations = [r for r in recommendations if r['priority'] == 'critical']
        high_recommendations = [r for r in recommendations if r['priority'] == 'high']
        
        if critical_recommendations:
            next_steps.append({
                'timeline': 'Immediate',
                'actions': [r['action'] for r in critical_recommendations],
                'priority': 'Critical'
            })
        
        if high_recommendations:
            next_steps.append({
                'timeline': 'Within 1 month',
                'actions': [r['action'] for r in high_recommendations],
                'priority': 'High'
            })
        
        medium_recommendations = [r for r in recommendations if r['priority'] == 'medium']
        if medium_recommendations:
            next_steps.append({
                'timeline': 'Within 3 months',
                'actions': [r['action'] for r in medium_recommendations],
                'priority': 'Medium'
            })
        
        return next_steps

# Usage example
resilience_mgmt = OrganizationalResilienceManagement()

# Create resilience framework
resilience_mgmt.create_resilience_framework('FRAMEWORK-001', {
    'name': 'Organizational Resilience Framework 2025',
    'description': 'Organizational resilience framework for 2025',
    'dimensions': ['operational', 'technological', 'human', 'strategic'],
    'capabilities': [
        'Continuity Planning',
        'Crisis Management',
        'Adaptive Leadership',
        'Innovation Culture'
    ],
    'maturity_levels': ['initial', 'repeatable', 'defined', 'managed', 'optimizing']
})

# Conduct resilience assessment
assessment_id = resilience_mgmt.conduct_resilience_assessment('ASSESS-001', {
    'framework_id': 'FRAMEWORK-001',
    'assessor': 'Resilience Team',
    'scope': 'organization_wide',
    'dimensions_assessed': ['operational', 'technological', 'human', 'strategic'],
    'continuity_planning_score': 75,
    'process_flexibility_score': 60,
    'redundancy_score': 80,
    'automation_score': 70,
    'system_architecture_score': 85,
    'cybersecurity_score': 90,
    'data_recovery_score': 75,
    'monitoring_score': 80,
    'adaptive_leadership_score': 65,
    'learning_culture_score': 70,
    'training_development_score': 60,
    'communication_score': 75,
    'adaptive_vision_score': 80,
    'flexible_strategy_score': 70,
    'continuous_innovation_score': 65,
    'risk_management_score': 85
})

# Create improvement plan
resilience_mgmt.create_improvement_plan('PLAN-001', {
    'name': 'Resilience Improvement Plan 2025',
    'description': 'Resilience improvement plan for 2025',
    'assessment_id': assessment_id,
    'improvement_areas': ['human', 'strategic'],
    'objectives': [
        'Improve adaptive leadership capabilities',
        'Enhance learning culture',
        'Strengthen strategic flexibility'
    ],
    'timeline': {
        'start_date': datetime.now(),
        'end_date': datetime.now() + timedelta(days=180)
    }
})

# Create crisis scenario
resilience_mgmt.create_crisis_scenario('SCENARIO-001', {
    'name': 'Cyber Attack Simulation',
    'description': 'Massive cyber attack simulation',
    'crisis_type': 'cyber_attack',
    'severity_level': 'high',
    'affected_systems': ['Order Processing', 'Customer Database'],
    'challenges': ['Data breach', 'System downtime', 'Customer impact'],
    'learning_objectives': [
        'Test incident response procedures',
        'Evaluate communication effectiveness',
        'Assess recovery capabilities'
    ]
})

# Generate report
report = resilience_mgmt.generate_resilience_report('FRAMEWORK-001')
print(f"Resilience report: {report['framework_name']}")
print(f"Resilience level: {report['metrics']['resilience_level']}")
print(f"Average score: {report['metrics']['avg_overall_score']:.1f}")
print(f"Strategic recommendations: {len(report['strategic_recommendations'])}")

Crisis and Adaptation Management

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
class CrisisAdaptationManagement:
    def __init__(self):
        self.crisis_events = {}
        self.adaptation_strategies = {}
        self.learning_captures = {}
        self.organizational_changes = {}
    
    def document_crisis_event(self, event_id, event_data):
        """Document crisis event"""
        self.crisis_events[event_id] = {
            'event_id': event_id,
            'title': event_data['title'],
            'description': event_data['description'],
            'crisis_type': event_data['crisis_type'],
            'severity': event_data['severity'],
            'start_date': event_data['start_date'],
            'end_date': event_data.get('end_date'),
            'impact_assessment': event_data.get('impact_assessment', {}),
            'response_actions': event_data.get('response_actions', []),
            'lessons_learned': [],
            'adaptation_opportunities': [],
            'status': 'active'
        }
    
    def capture_lessons_learned(self, event_id, lessons_data):
        """Capture lessons learned"""
        if event_id not in self.crisis_events:
            return False
        
        event = self.crisis_events[event_id]
        
        lesson = {
            'lesson_id': f"LESSON-{len(event['lessons_learned']) + 1}",
            'category': lessons_data['category'],
            'description': lessons_data['description'],
            'impact': lessons_data['impact'],
            'recommendations': lessons_data.get('recommendations', []),
            'captured_by': lessons_data['captured_by'],
            'captured_date': datetime.now(),
            'status': 'new'
        }
        
        event['lessons_learned'].append(lesson)
        
        return True
    
    def identify_adaptation_opportunities(self, event_id, opportunities_data):
        """Identify adaptation opportunities"""
        if event_id not in self.crisis_events:
            return False
        
        event = self.crisis_events[event_id]
        
        opportunity = {
            'opportunity_id': f"OPP-{len(event['adaptation_opportunities']) + 1}",
            'type': opportunities_data['type'],
            'description': opportunities_data['description'],
            'potential_benefits': opportunities_data.get('potential_benefits', []),
            'implementation_effort': opportunities_data.get('implementation_effort', 'medium'),
            'timeline': opportunities_data.get('timeline', '3-6 months'),
            'identified_by': opportunities_data['identified_by'],
            'identified_date': datetime.now(),
            'status': 'identified'
        }
        
        event['adaptation_opportunities'].append(opportunity)
        
        return True
    
    def implement_organizational_change(self, change_id, change_data):
        """Implement organizational change"""
        self.organizational_changes[change_id] = {
            'change_id': change_id,
            'title': change_data['title'],
            'description': change_data['description'],
            'change_type': change_data['change_type'],
            'scope': change_data['scope'],
            'objectives': change_data.get('objectives', []),
            'implementation_plan': change_data.get('implementation_plan', []),
            'success_metrics': change_data.get('success_metrics', []),
            'stakeholders': change_data.get('stakeholders', []),
            'start_date': change_data.get('start_date', datetime.now()),
            'target_completion': change_data.get('target_completion'),
            'status': 'planned',
            'progress': 0,
            'created_date': datetime.now()
        }
    
    def track_change_progress(self, change_id, progress_data):
        """Track change progress"""
        if change_id not in self.organizational_changes:
            return False
        
        change = self.organizational_changes[change_id]
        
        progress_entry = {
            'progress_id': f"PROG-{len(change.get('progress_entries', [])) + 1}",
            'date': datetime.now(),
            'progress_percentage': progress_data['progress_percentage'],
            'milestones_achieved': progress_data.get('milestones_achieved', []),
            'challenges': progress_data.get('challenges', []),
            'next_steps': progress_data.get('next_steps', []),
            'updated_by': progress_data.get('updated_by', 'system')
        }
        
        if 'progress_entries' not in change:
            change['progress_entries'] = []
        
        change['progress_entries'].append(progress_entry)
        change['progress'] = progress_data['progress_percentage']
        
        # Update status
        if change['progress'] >= 100:
            change['status'] = 'completed'
        elif change['progress'] > 0:
            change['status'] = 'in_progress'
        
        return True
    
    def generate_adaptation_report(self, event_id):
        """Generate adaptation report"""
        if event_id not in self.crisis_events:
            return None
        
        event = self.crisis_events[event_id]
        
        # Get related changes
        related_changes = [c for c in self.organizational_changes.values() if event_id in c.get('related_events', [])]
        
        report = {
            'event_id': event_id,
            'event_title': event['title'],
            'report_date': datetime.now(),
            'crisis_type': event['crisis_type'],
            'severity': event['severity'],
            'lessons_learned_count': len(event['lessons_learned']),
            'adaptation_opportunities_count': len(event['adaptation_opportunities']),
            'related_changes_count': len(related_changes),
            'adaptation_effectiveness': self.calculate_adaptation_effectiveness(event, related_changes),
            'recommendations': self.generate_adaptation_recommendations(event, related_changes)
        }
        
        return report
    
    def calculate_adaptation_effectiveness(self, event, related_changes):
        """Calculate adaptation effectiveness"""
        if not related_changes:
            return 0
        
        # Calculate effectiveness metrics
        completed_changes = len([c for c in related_changes if c['status'] == 'completed'])
        total_changes = len(related_changes)
        
        completion_rate = (completed_changes / total_changes * 100) if total_changes > 0 else 0
        
        # Calculate effectiveness score based on lessons learned
        lessons_count = len(event['lessons_learned'])
        opportunities_count = len(event['adaptation_opportunities'])
        
        effectiveness_score = (completion_rate * 0.6) + (min(lessons_count * 10, 40)) + (min(opportunities_count * 5, 20))
        
        return min(effectiveness_score, 100)
    
    def generate_adaptation_recommendations(self, event, related_changes):
        """Generate adaptation recommendations"""
        recommendations = []
        
        # Recommendations based on lessons learned
        if len(event['lessons_learned']) > 5:
            recommendations.append({
                'type': 'lesson_implementation',
                'priority': 'high',
                'description': 'Implement identified lessons learned',
                'action': 'Create action plans for key lessons learned'
            })
        
        # Recommendations based on opportunities
        if len(event['adaptation_opportunities']) > 3:
            recommendations.append({
                'type': 'opportunity_exploitation',
                'priority': 'medium',
                'description': 'Exploit identified adaptation opportunities',
                'action': 'Prioritize and implement adaptation opportunities'
            })
        
        # Recommendations based on changes
        if not related_changes:
            recommendations.append({
                'type': 'change_initiation',
                'priority': 'high',
                'description': 'Initiate organizational changes based on crisis',
                'action': 'Identify and implement necessary organizational changes'
            })
        
        return recommendations

# Usage example
adaptation_mgmt = CrisisAdaptationManagement()

# Document crisis event
adaptation_mgmt.document_crisis_event('EVENT-001', {
    'title': 'Major Cyber Attack',
    'description': 'Massive cyber attack affecting multiple systems',
    'crisis_type': 'cyber_attack',
    'severity': 'high',
    'start_date': datetime.now() - timedelta(days=30),
    'end_date': datetime.now() - timedelta(days=25),
    'impact_assessment': {
        'financial_impact': 'high',
        'operational_impact': 'critical',
        'reputation_impact': 'medium'
    }
})

# Capture lessons learned
adaptation_mgmt.capture_lessons_learned('EVENT-001', {
    'category': 'incident_response',
    'description': 'Need to improve communication during crisis',
    'impact': 'high',
    'recommendations': ['Improve communication channels', 'Establish clear protocols'],
    'captured_by': 'Crisis Management Team'
})

# Identify adaptation opportunities
adaptation_mgmt.identify_adaptation_opportunities('EVENT-001', {
    'type': 'process_improvement',
    'description': 'Automate incident response processes',
    'potential_benefits': ['Faster response', 'Less human error'],
    'implementation_effort': 'high',
    'timeline': '6-12 months',
    'identified_by': 'IT Team'
})

# Implement organizational change
adaptation_mgmt.implement_organizational_change('CHANGE-001', {
    'title': 'Enhanced Incident Response Procedures',
    'description': 'Improvement of incident response procedures',
    'change_type': 'process_improvement',
    'scope': 'organization_wide',
    'objectives': ['Reduce response time', 'Improve communication'],
    'target_completion': datetime.now() + timedelta(days=90)
})

# Generate report
report = adaptation_mgmt.generate_adaptation_report('EVENT-001')
print(f"Adaptation report: {report['event_title']}")
print(f"Adaptation effectiveness: {report['adaptation_effectiveness']:.1f}%")
print(f"Lessons learned: {report['lessons_learned_count']}")

Best Practices

Resilience Development

  • Holistic Approach: Address all resilience dimensions
  • Adaptive Leadership: Develop leadership that adapts to changes
  • Learning Culture: Foster continuous learning
  • Continuous Innovation: Maintain innovation capacity

Crisis Management

  • Preparation: Proactive crisis preparation
  • Rapid Response: Quick and effective response
  • Learning: Learning from each crisis
  • Adaptation: Adaptation based on experiences

Continuous Improvement

  • Regular Assessment: Regular resilience assessment
  • Clear Metrics: Clear progress metrics
  • Planning: Improvement planning
  • Implementation: Effective implementation of changes

References